Monitoring DeepSeek API with SigNoz

Overview

This guide walks you through setting up monitoring for DeepSeek API using OpenTelemetry and exporting logs, traces, and metrics to SigNoz. With this integration, you can observe model performance, capture request/response details, and track system-level metrics in SigNoz, giving you real-time visibility into latency, error rates, and usage trends for your DeepSeek applications.

Instrumenting DeepSeek in your LLM applications with telemetry ensures full observability across your AI workflows, making it easier to debug issues, optimize performance, and understand user interactions. By leveraging SigNoz, you can analyze correlated traces, logs, and metrics in unified dashboards, configure alerts, and gain actionable insights to continuously improve reliability, responsiveness, and user experience.

Prerequisites

  • A SigNoz Cloud account with an active ingestion key
  • Internet access to send telemetry data to SigNoz Cloud
  • An DeepSeek API account with a working API Key
  • For Python: pip installed for managing Python packages and (optional but recommended) a Python virtual environment to isolate dependencies
  • For JavaScript: Node.js (version 14 or higher) and npm installed for managing Node.js packages

Monitoring DeepSeek

The DeepSeek API uses an API format compatible with OpenAI. By modifying the configuration, you can use the OpenAI SDK or softwares compatible with the OpenAI API to access the DeepSeek API. Hence, a similar method to monitor OpenAI APIs can be used for monitoring DeepSeek APIs as well. To read more about this, you can read the DeepSeek API Docs

Step 1: Install the necessary packages in your Python environment.

pip install \
  opentelemetry-api \
  opentelemetry-sdk \
  opentelemetry-exporter-otlp \
  opentelemetry-instrumentation-httpx \
  opentelemetry-instrumentation-system-metrics \
  openai \
  openinference-instrumentation-openai

Step 2: Import the necessary modules in your Python application

Traces:

from openinference.instrumentation.openai import OpenAIInstrumentor
from opentelemetry import trace
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter

Logs:

from opentelemetry.sdk._logs import LoggerProvider, LoggingHandler
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.exporter.otlp.proto.http._log_exporter import OTLPLogExporter
from opentelemetry._logs import set_logger_provider
import logging

Metrics:

from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from opentelemetry import metrics
from opentelemetry.instrumentation.system_metrics import SystemMetricsInstrumentor
from opentelemetry.instrumentation.httpx import HTTPXClientInstrumentor

Step 3: Set up the OpenTelemetry Tracer Provider to send traces directly to SigNoz Cloud

from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry import trace
import os

resource = Resource.create({"service.name": "<service_name>"})
provider = TracerProvider(resource=resource)
span_exporter = OTLPSpanExporter(
    endpoint= os.getenv("OTEL_EXPORTER_TRACES_ENDPOINT"),
    headers={"signoz-ingestion-key": os.getenv("SIGNOZ_INGESTION_KEY")},
)
processor = BatchSpanProcessor(span_exporter)
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
  • <service_name> is the name of your service
  • OTEL_EXPORTER_TRACES_ENDPOINT → SigNoz Cloud trace endpoint with appropriate region:https://ingest.<region>.signoz.cloud:443/v1/traces
  • SIGNOZ_INGESTION_KEY → Your SigNoz ingestion key

Step 4: Instrument DeepSeek using OpenAInstrumentor and the configured Tracer Provider

from openinference.instrumentation.openai import OpenAIInstrumentor

OpenAIInstrumentor().instrument(tracer_provider=provider)

📌 Important: Place this code at the start of your application logic — before any DeepSeek functions are called or used — to ensure telemetry is correctly captured.

Step 5: Setup Logs

import logging
from opentelemetry.sdk.resources import Resource
from opentelemetry._logs import set_logger_provider
from opentelemetry.sdk._logs import LoggerProvider, LoggingHandler
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.exporter.otlp.proto.http._log_exporter import OTLPLogExporter
import os

resource = Resource.create({"service.name": "<service_name>"})
logger_provider = LoggerProvider(resource=resource)
set_logger_provider(logger_provider)

otlp_log_exporter = OTLPLogExporter(
    endpoint= os.getenv("OTEL_EXPORTER_LOGS_ENDPOINT"),
    headers={"signoz-ingestion-key": os.getenv("SIGNOZ_INGESTION_KEY")},
)
logger_provider.add_log_record_processor(
    BatchLogRecordProcessor(otlp_log_exporter)
)
# Attach OTel logging handler to root logger
handler = LoggingHandler(level=logging.INFO, logger_provider=logger_provider)
logging.basicConfig(level=logging.INFO, handlers=[handler])

logger = logging.getLogger(__name__)
  • <service_name> is the name of your service
  • OTEL_EXPORTER_LOGS_ENDPOINT → SigNoz Cloud endpoint with appropriate region:https://ingest.<region>.signoz.cloud:443/v1/logs
  • SIGNOZ_INGESTION_KEY → Your SigNoz ingestion key

Step 6: Setup Metrics

from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from opentelemetry import metrics
from opentelemetry.instrumentation.system_metrics import SystemMetricsInstrumentor
import os

resource = Resource.create({"service.name": "<service-name>"})
metric_exporter = OTLPMetricExporter(
    endpoint= os.getenv("OTEL_EXPORTER_METRICS_ENDPOINT"),
    headers={"signoz-ingestion-key": os.getenv("SIGNOZ_INGESTION_KEY")},
)
reader = PeriodicExportingMetricReader(metric_exporter)
metric_provider = MeterProvider(metric_readers=[reader], resource=resource)
metrics.set_meter_provider(metric_provider)

meter = metrics.get_meter(__name__)

# turn on out-of-the-box metrics
SystemMetricsInstrumentor().instrument()
HTTPXClientInstrumentor().instrument()
  • <service_name> is the name of your service
  • OTEL_EXPORTER_METRICS_ENDPOINT → SigNoz Cloud endpoint with appropriate region:https://ingest.<region>.signoz.cloud:443/v1/metrics
  • SIGNOZ_INGESTION_KEY → Your SigNoz ingestion key

📌 Note: SystemMetricsInstrumentor provides system metrics (CPU, memory, etc.), and HTTPXClientInstrumentor provides outbound HTTP request metrics such as request duration. These are not DeepSeek-specific metrics. DeepSeek does not expose metrics as part of their SDK. If you want to add custom metrics to your DeepSeek application, see Python Custom Metrics.

Step 7: Run an example

import openai
import os
 
client = OpenAI(api_key=os.getenv("DEEPSEEK_API_KEY"), base_url="https://api.deepseek.com")

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": "What is SigNoz?"},
    ],
    stream=False
)

print(response.choices[0].message.content)

📌 Note: Before running this code, ensure that you have set the environment variable DEEPSEEK_API_KEY with your generated API key.

View Traces, Logs, and Metrics in SigNoz

Your DeepSeek commands should now automatically emit traces, logs, and metrics.

You should be able to view traces in Signoz Cloud under the traces tab:

DeepSeek Trace View
DeepSeek API Trace View

When you click on a trace in SigNoz, you'll see a detailed view of the trace, including all associated spans, along with their events and attributes.

DeepSeek Detailed Trace View
DeepSeek API Detailed Trace View

You should be able to view logs in Signoz Cloud under the logs tab. You can also view logs by clicking on the “Related Logs” button in the trace view to see correlated logs:

Related logs
Related logs button
DeepSeek Logs View
DeepSeek API Logs View

When you click on any of these logs in SigNoz, you'll see a detailed view of the log, including attributes:

DeepSeek Detailed Log View
DeepSeek API Detailed Logs View

You should be able to see DeepSeek related metrics in Signoz Cloud under the metrics tab:

DeepSeek Metrics View
DeepSeek API Metrics View

When you click on any of these metrics in SigNoz, you'll see a detailed view of the metric, including attributes:

DeepSeek Detailed Metrics View
DeepSeek API Detailed Metrics View

Dashboard

You can also check out our custom DeepSeek API dashboard here which provides specialized visualizations for monitoring your DeepSeek API usage in applications. The dashboard includes pre-built charts specifically tailored for LLM usage, along with import instructions to get started quickly.

DeepSeek Dashboard
DeepSeek API Dashboard Template

Last updated: September 15, 2025

Edit on GitHub

Was this page helpful?